Base pairing constraints drive structural epistasis in ribosomal RNA sequences.

نویسندگان

  • Julien Y Dutheil
  • Fabrice Jossinet
  • Eric Westhof
چکیده

It has long been accepted that the structural constraints stemming from the 3D structure of ribosomal RNA (rRNA) lead to coevolution through compensating mutations between interacting sites. State-of-the-art methods for detecting coevolving sites, however, while reaching high levels of specificity and sensitivity for Watson-Crick (WC) pairs of the helices defining the secondary structure, only scarcely reveal tertiary interactions occurring at the level of the 3D structure. In order to understand the relative failure of coevolutionary methods to detect such interactions, we analyze 2,682 interacting sites derived from high-resolution structures, which include a comprehensive data set of rRNA sequences from Archaea and Bacteria. We report a striking difference in the amount of coevolution between WC and non-WC pairs. In order to understand this pattern, we derive fitness landscapes from the geometry of base pairing interactions and construct neutral networks of substitutions for each type of interaction. These networks show that coevolution is a property of WC pairs because, unlike non-WC pairs, their landscapes exhibit fitness valleys, a single mutation in a WC pair resulting in a fitness drop. Second, we used the inferred neutral networks to estimate the level of constraint acting on each type of base pair and show that it correlates negatively with the observed rate of substitutions for all non-WC pairs. WC pairs appear as outliers, fixing more substitutions than expected according to their level of constraint. We here propose that the rate of substitution in WC pairs is due to coevolution resulting from constraints acting at intermediate levels of organization, namely the one of the helical stem with its forming WC pairs. In agreement with this hypothesis, we report a significant excess of intrahelical, inter-WC pairs coevolution compared with interhelices pairs. Altogether, these results show that detailed biochemical knowledge is required and has to be incorporated into evolutionary reasoning in order to understand the fine patterns of variation at the molecular level. They also demonstrate that coevolutionary analysis provides almost exclusively 2D information and only little 3D signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covariant Evolutionary Event Analysis for Base Interaction Prediction Using a Relational Database Management System for RNA

With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified p...

متن کامل

Secondary structure of 5 S ribosomal RNA.

A secondary structure model for 16S ribosomal RNA which is based on available chemical, enzymatic, and comparative sequence data shows good agreement between constraints dictated by the model and a wide variety of experimental observations. The four major structural domains created by the base-pairing scheme correspond closely to RNA fragments isolated after nuclease digestion in the presence o...

متن کامل

Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure.

A dynamic programming algorithm for prediction of RNA secondary structure has been revised to accommodate folding constraints determined by chemical modification and to include free energy increments for coaxial stacking of helices when they are either adjacent or separated by a single mismatch. Furthermore, free energy parameters are revised to account for recent experimental results for termi...

متن کامل

Structural Constraints Identified with Covariation Analysis in Ribosomal RNA

Covariation analysis is used to identify those positions with similar patterns of sequence variation in an alignment of RNA sequences. These constraints on the evolution of two positions are usually associated with a base pair in a helix. While mutual information (MI) has been used to accurately predict an RNA secondary structure and a few of its tertiary interactions, early studies revealed th...

متن کامل

Modeling RNA tertiary structure motifs by graph-grammars

A new approach, graph-grammars, to encode RNA tertiary structure patterns is introduced and exemplified with the classical sarcin-ricin motif. The sarcin-ricin motif is found in the stem of the crucial ribosomal loop E (also referred to as the sarcin-ricin loop), which is sensitive to the alpha-sarcin and ricin toxins. Here, we generate a graph-grammar for the sarcin-ricin motif and apply it to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 27 8  شماره 

صفحات  -

تاریخ انتشار 2010